Aarhus University Seal / Aarhus Universitets segl

News & Events

News

Ebbe S. Andersen receives 10 mio from the Novo Nordisk Foundation. (Photo: Lars Kruse, AU Photo)
Researchers from the Andersen Lab for Biomolecular Design who developed the RNA-based technology platform. (Photo: Nestor Sampedro)
Illustration of (A) RNA origami scaffolds that can be produced in cells, (B) RNA scaffolds for enzymatic cascades, (C) Function of RNA scaffolds and sensors in cells. (Ill.: Ebbe S. Andersen)

2020.07.03 | iNano

DKK 10 million for developing nanoscale assembly lines for biotechnological production

Ebbe S. Andersen is awarded a DKK 10 million Ascending Investigator Grant from the Novo Nordisk Foundation’s Research Leader Programme. The research project aims at using recently developed RNA nanotechnology-based assembly lines, sensors and nanorobots to improve biochemical reactions inside cells. The potential outcome will be improved bacterial…

Alexander Zelikin receives 13.5m from Novo Nordisk Foundation for signalling and internalising receptor mimics. (Photo: Lars Kruse, AU Photo)

2020.06.25 | iNano

The Novo Nordisk Foundation supports wild scientific and technical research ideas

For the first time, the Novo Nordisk Foundation has awarded grants within the research programme NERD, which is targeted at ambitious and wild research ideas in the fields of scientific and technical research. At Aarhus University, Associate Professor Alexander Zelikin has just received DKK 13.5 million.

Jørgen Kjems (left) og Morten T. Venø describes in an article in PNAS, how expression of non-coding RNA changes during epileptic seizures in rodents (Photo: Anne Færch Nielsen)

2020.06.25 | iNano

Large-scale data sets identify small RNAs with a role in epilepsy

A new paper from Jørgen Kjems' group at iNANO and MBG describes how expression of non-coding RNA changes during epileptic seizures in rodents. The authors found that inhibiting a specific set of microRNAs (miRNAs) by antisense technology reduced seizure frequency in a mouse model, suggesting that these RNA molecules could serve as possible targets…

(ill: Tilman Grünewald)

2020.06.15 | iNano

3D X-ray reveals secrets from inside bones

An international research team has used new X-ray techniques to describe how the architecture of healthy human bones is built up. The team has uncovered a hitherto unknown structure in healthy bones.

A project team from Aarhus University and Fida Biosystems will use advanced microfluidic techniques in the search for compounds, which can block the contact between SARS-CoV-2 virus and receptors on human cells. Click on the graphic to see it full size. (Graphics by Daniel Otzen)
Daniel Otzen is heading a collaborative project with DKK 3.8 million from the Innovation Fund Denmark for combating COVID-19. Photo: Jesper Rais, AU.

2020.05.29 | iNano

DKK 3.8 million for collaboration on fighting COVID-19

Daniel Otzen and collaborators, Jørgen Kjems and Victoria Birkedal from the Interdisciplinary Nanoscience Center (iNANO) and the company Fida Biosystems, have received DKK 3.8 million from the Innovation Fund Denmark to develop a screening system to identify drugs that are able to combat COVID-19.

Events

Fri 24 Jul
13:15-15:15 | iNANO AUD 1593-012
PhD defence: The intervention before biofilm formation
PhD student Heba Khateb Abdelkhalek Khateb, INANO