Aarhus University Seal / Aarhus Universitets segl

Publications

Publications

2021
29)

Bioengineered solutions to improve cancer immunotherapies. Mandrup, O.A., and Howard, K.A. Ther Deliv. 2021, 12, 339-341. https://doi.org/10.4155/tde-2021-0019

28)

Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Mandrup, O.A., Ong, S.C., Lykkemark, S., Dinesen, A., Rudnik-Jansen, I., Dagnaes-Hansen, N.F., Andersen, J.T., Alvarez-Vallina, L., and Howard, K.A. Commun Biol. 2021, 4, 310. https://doi.org/10.1038/s42003-021-01790-2

27)

A Reagent for Amine-Directed Conjugation to IgG1 Antibodies. Marcher, A., Palmfeldt, J., Nisavic, M., and Gothelf, K.V. Angew Chem Int Ed Engl. 2021, 60, 6539-6544. https://doi.org/10.1002/anie.202013911

26)

Roadmap on nanomedicine. Decuzzi, P., Peer, D., Mascolo, D.D., Palange, A.L., Manghnani, P.N., Moghimi, S.M., Farhangrazi, Z.S., Howard, K.A., Rosenblum, D., Liang, T., et al. Nanotechnology. 2021, 32, 012001. https://doi.org/10.1088/1361-6528/abaadb

2020
25)

Avoiding the Pitfalls of siRNA Delivery to the Retinal Pigment Epithelium with Physiologically Relevant Cell Models. Ramsay, E., Ravina, M., Sarkhel, S., Hehir, S., Cameron, N.R., Ilmarinen, T., Skottman, H., Kjems, J., Urtti, A., Ruponen, M., et al. Pharmaceutics. 2020, 12.ARTN 667, https://doi.org/10.3390/pharmaceutics12070667

24) Improved Cancer Targeting by Multimerizing Aptamers on Nanoscaffolds. Omer, M., Andersen, V.L., Nielsen, J.S., Wengel, J., and Kjems, J. Mol Ther-Nucl Acids. 2020, 22, 994-1003. https://doi.org/10.1016/j.omtn.2020.10.013
23) LifeTime and improving European healthcare through cell-based interceptive medicine. Rajewsky, N., Almouzni, G., Gorski, S.A., Aerts, S., Amit, I., Bertero, M.G., Bock, C., Bredenoord, A.L., Cavalli, G., Chiocca, S., et al. Nature. 2020, 587, 377-386. https://doi.org/10.1038/s41586-020-2715-9
22)

Albumin-based drug designs for pharmacokinetic modulation. Pilati, D., and Howard, K.A. Expert Opin Drug Met. 2020, 16, 783-795. https://doi.org/10.1080/17425255.2020.1801633

21)

FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. Larsen, M.T., Mandrup, O.A., Schelde, K.K., Luo, Y., Sorensen, K.D., Dagnaes-Hansen, F., Cameron, J., Stougaard, M., Steiniche, T., and Howard, K.A. J Control Release. 2020, 322, 53-63. https://doi.org/10.1016/j.jconrel.2020.03.004

20)

Albumin-Binding Fatty Acid-Modified Gapmer Antisense Oligonucleotides for Modulation of Pharmacokinetics. Cai, Y., Lou, C., Wengel, J., and Howard, K.A. Methods Mol Biol. 2020, 2176, 163-174. https://doi.org/10.1007/978-1-0716-0771-8_12

19)

Introduction of an Aldehyde Handle on Nanobodies by Affinity-Guided Labeling. Mortensen, M.R., Skovsgaard, M.B., Marcher, A., Andersen, V.L., Palmfeldt, J., Nielsen, T.B., Torring, T., Laursen, N.S., Andersen, K.R., Kjems, J., et al. Bioconjugate Chem. 2020, 31, 1295-1300. https://doi.org/10.1021/acs.bioconjchem.0c00151

18)

Two-Dimensional Coordination Networks from Cyclic Dipeptides. Guo, Y., Nuermaimaiti, A., Kjeldsen, N.D., Gothelf, K.V., and Linderoth, T.R. J Am Chem Soc. 2020, 142, 19814-19818. https://doi.org/10.1021/jacs.0c08700

17)

Disulphide-mediated site-directed modification of proteins. Nielsen, T., Marcher, A., Drobnakova, Z., Hucko, M., Stengl, M., Balsanek, V., Wiberg, C., Nielsen, P.F., Nielsen, T.E., Gothelf, K.V., et al. Org Biomol Chem.2020, 18, 4717-4722. https://doi.org/10.1039/d0ob00861c

2019
16)

A new class of recombinant human albumin with multiple surface thiols exhibits stable conjugation and enhanced FcRn binding and blood circulation Schelde, K. K.; Nicholls, K.; Dagnæs-Hansen, F.; Rawsthorne, H.; Andersen, B.; Finnis, C. J. A.; Williamson, M.; Cameron, J.; Howard, K. A. J Biol. Chem. 2019, 294, 3735-3743. https://doi.org/10.1074/jbc.RA118.005870

15)

Optimised approach to albumin–drug conjugates using monobromomaleimide-C-2 linkers Wall, A.; Nicholls, K.; Caspersen, M. B.; Skrivergaard, S.; Howard, K. A.; Karu, K.; Chudasama, V.; Baker, J. R. Org. Biomol. Chem. 2019, 17, 7870-7873, https://doi.org/10.1039/C9OB00721K

14)

Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis Garcia, J. P.;  Stein, J.; Cai, Y.; Riemers, F.; Wexselblatt, E.; Wengel, J. Tryfonidous, M.; Yayon, A.; Howard, K. A.; Creemers, L. B., J. Contol Release, 2019, 294, 247-258, https://doi.org/10.1016/j.jconrel.2018.12.030

13)

Cellular uptake of covalent and non-covalent DNA nanostructures with different sizes and geometries Raniolo, S.; Croce, S.; Thomsen, R. P.; Okholm, A. H.; Unida, V.; Iacovelli, F.; Manetto, A.; Kjems, J.; Desideri, A.; Biocca, S., Nanoscale, 2019, 11, 10808-10818,  https://doi.org/10.1039/C9NR02006C

12)

An RNA Origami Octahedron with Intrinsic siRNAs for Potent Gene Knockdown Høiberg, H.C.; Sparvath, S. M.; Andersen, V. L.; Kjems, J.; Andersen, E. S., Biotechnol J. 2019, 14, e1700634, https://doi.org/doi:10.1002/biot.201700634

11)

Genetically-encoded, functional single-strand RNA origami Krissanaprasit, A.; Key, C.; Fergione, M..; Froehlich, K.; Pontula, S.; Hart, M.; Carriel, P.; Kjems, J.; Andersen, E. S.; LaBean, T. H. Anticoagulant Adv. Mat,. 2019, 31, e1808262, https://doi:10.1002/adma.201808262

10)

Toehold-Mediated Strand Displacement in a Triplex Forming Nucleic Acid Clamp for Reversible Regulation of Polymerase Activity and Protein Expression Nguyen, T. J. D.; Manuguerra, I.; Kumar, V.; Gothelf, K. V. Chemistry 2019, 25, 12303-12307, https://doi.org/10.1002/chem.201903496

9)

Aptamer-Directed Conjugation of DNA to Therapeutic Antibodies Skovsgaard, M. B.; Mortensen, M. R.; Palmfeldt, J.; Gothelf, K. V. Bioconjugate Chem 2019, 30, 2127-2135. https://doi.org/10.1021/acs.bioconjchem.9b00363

8)

Nucleic Acids as a Nature-Inspired Scaffold for Macromolecular Prodrugs of Nucleoside Analogues Krüger, F.; Kumar, V.; Monge, P.; Conzelmann, C.; Smith, N.; Gothelf, K. V.; Tolstrup, M.; Münch, J.; Zelikin, A. N. Adv. Sci. 2019, 6, 1802095. https://doi.org/10.1002/advs.201802095

7)

Selective delivery of doxorubicin to EGFR+ cancer cells by Cetuximab‐DNA conjugates Liu, T.; Song, P.; Märcher, A.; Kjems, J.; Yang, C.; Gothelf, K. V. ChemBioChem, 2019, 20. 1014-1018. https://doi.org/10.1002/cbic.201800685

6)

A Self-Assembled, Modular Nucleic Acid-Based Nanoscaffold for multivalent Theranostic Medicine Andersen, V. L.; Vinther, M.; Kumar, R.; Ries, A.; Wengel, J.; Nielsen, J. S.; Kjems, J. Theranostics 2019, 9, 2662-2677 https://doi.org/10.7150/thno.32060

5)

Peptide-Directed DNA-Templated Protein Labelling for The Assembly of a Pseudo-IgM Nielsen, T. B.; Thomsen, R. P.; Mortensen, M. R.; Kjems, J.; Nielsen, P. F.; Nielsen, T. E.; Kodal, A. L. B.; Clo, E.; Gothelf, K. V. Angew. Chem. 2019https://doi.org/10.1002/anie.201903134

4)

Considerations on probe design for affinity guided protein conjugation Mortensen, M. R.; Skovsgaard, M. B.; Gothelf, K. V. ChemBioChem 2019https://doi.org/10.1002/cbic.201900157

3)

Affinity-Guided Conjugation to Antibodies for use in Positron Emission Tomography Skovsgaard, M. B.; Jeppesen, T. E.; Mortensen, M. R.; Nielsen, C. H.; Madsen, J.; Kjær, A.; Gothelf, K. V. Bioconjugate Chem.2019, 30, 881-887, https://doi.org/10.1021/acs.bioconjchem.9b00013

2)

Chemistries for DNA Nanotechnology Madsen, M; Gothelf, K.V. Chem. Rev. 2019https://doi.org/10.1021/acs.chemrev.8b00570

1)

Imidazole Carbamate Probes for Affinity Guided Azide-Transfer to Metal-Binding Protein Mortensen, M. R.; Nielsen, N. L.; Palmfeldt, J.; Gothelf K. V. Org. Biomo.l Chem.201917, 1379-1383,https://doi.org/10.1039/c8ob03017k