Aarhus University Seal / Aarhus Universitets segl

Protein Biophysics (Prof. Daniel Otzen)

Daniel Otzen

Professor Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset
Group members
Research funding

Research focus in brief

Our research activities fall within 3 main areas, which all relate to the study of the kinetics and thermodynamics of protein conformational changes, namely membrane protein folding, protein-detergent interactions and protein fibrillation. These areas are linked by a keen interest in understanding the mechanistic and thermodynamic behaviour of proteins in different circumstances by quantifying the strength of internal side-chain interactions as well as contacts with solvent molecules, whether it be detergents, denaturants, stabilizing salts and osmolytes or lipids. Ultimately we hope this will lead to a greater manipulative ability vis-a-vis processes of both basic, pharmaceutical and industrial relevance. The general approach is to use available spectroscopic techniques (fluorescence, CD, stopped-flow, FTIR, NMR and dynamic and static light scattering) to generate data which can be analyzed in a quantitative manner to develop models and mechanisms for conformational changes at the molecular level.  

News

On the raw electron micrographs (A), one can find the individual protein molecules (green boxes). By taking an average of thousands of such similarly oriented particles, one can get sharp two-dimensional images (B), from which one can calculate the protein's three-dimensional structure (C). Finally, one can interpret this result by building a model of the protein (D). Image: Milena Timcenko.

2019.06.27 | iNano

Groundbreaking cryo-electron microscopy at Aarhus University reveals the first structures of a protein that maintains cell membranes

Using cutting-edge electron microscopy, researchers from Aarhus University have determined the first structures of a lipid-flippase. The discoveries provide a better understanding of the basics of how cells work and stay healthy, and can eventually increase our knowledge of neurodegenerative diseases such as Alzheimer’s.

Marianne Glasius participates in programme, funded by the Novo Nordisk Foundation, for developing more productive crops. (Photo by Lars Kruse, AU Photo)

2019.06.18 | iNano

An international research team receives EUR 27 million to develop more productive crops

The Novo Nordisk Foundation awards EUR 27 milllion to the Collaborative Crop Resilience Programme (CCRP). The programme will investigate the interaction between roots and leaves with bacteria and help reduce the use of fertilizers. Assoc. Prof. Marianne Glasius is participating in one of the programmes, InRoot.

Nina Lock and Troels Skrydstrup each lead their research group, but collaborate on a common task: to develop sustainable catalysts that can transform CO2 into valuable resources. Photo: Dorthe Lundh

2019.06.14 | iNano

CO2 could replace fossil fuels in industry

Researchers at Aarhus University are developing new chemical technologies to reduce CO2 emissions and support the green transition in both public and private manufacturing companies.

Showing results 1 to 3 of 226

1 2 3 4 5 6 7 8 9 10 Next

Recent publications

Sort by: Date | Author | Title