Aarhus University Seal

Distinguished iNANO Lecture by Professor Patrick Unwin

Correlative Electrochemical Multi-Microscopy: Nanoscale Measurements Facilitate a Multiscale Understanding of Electrochemical Processes and Interfaces

Info about event


Friday 25 November 2022,  at 10:15 - 11:00


iNANO AUD (1593-012)


Professor Mingdong Dong (dong@inano.au.dk)

Professor Patrick Unwin, Department of Chemistry, University of Warwick, UK

Correlative Electrochemical Multi-Microscopy: Nanoscale Measurements Facilitate a Multiscale Understanding of Electrochemical Processes and Interfaces
Electrodes of practical importance are usually complex on a range of length scales, from the nanoscale to the device level. To deepen understanding of electrochemical processes, we have invented new techniques – primarily scanning electrochemical cell microscopy (SECCM) - that enable quantitative visualisation of nanoscale electrode activity in the form of activity maps and activity movies.1-10 These rich datasets are mapped onto co-located electrode structure and properties from complementary high-resolution microscopy and spectroscopy techniques. With this approach, complex electrode surfaces are studied as set of “single entities” (e.g., individual steps, terraces, defects, crystal facets, grain boundaries, single particles).1,5 The resulting detailed microscopic information is used to predict and test the behaviour of electrodes on larger length scales. In this presentation, I will address the question: what can learn about electrochemical systems from a multiscale approach?

A wide range of illustrative examples of this general philosophy includes investigations of 1D and 2D materials, single particles and ensembles of particles on electrode supports, as well as structurally and/or compositionally heterogeneous surfaces, such as polycrystalline metals and polymer composite electrodes. Applications include electrocatalysis, battery electrodes, next generation membranes and corrosion. Ultimately, the approaches we advocate provide a roadmap to facilitate the rational design of functional (electro)materials. The techniques and ideas can also be translated to other areas, from crystallisation to studies of living cells at the nanoscale.

I am grateful to many members of the Warwick Electrochemistry & Interfaces Group and our many collaborators who have contributed to our work in this area and will be acknowledged throughout this lecture.

[1] D. Martín-Yerga, D. C. Milan, X. Xu, J. Fernández-Vidal, L. Whalley, A. J. Cowan, L. J. Hardwick and P. R. Unwin, Angew. Chem. Int. Ed. 2022, 61, e202207184.
[2] R. G. Mariano, O. J. Wahab, J. A. Rabinowitz, J. Oppenheim, T. Chen, P. R. Unwin and M. Dinca, ACS Central Sci., 2022, 8, 975–982.
[3] O. J. Wahab, M. Kang, E. Daviddi, M. Walker and P. R. Unwin, ACS Catalysis, 2022, 12, 6578 - 6588.
[4] C. L. Bentley, M. Kang, S. Bukola, S. E. Creager and P. R. Unwin, ACS Nano, 2022, 16, 5233 - 5245.
[5] S.-X. Guo, C. L. Bentley, M. Kang, A. M. Bond, P. R. Unwin and J. Zhang, Acc. Chem. Res. 2022, 55, 241 - 251.
[6] D.-Q. Liu, M. Kang, D. Perry, C.-H. Chen, G. West, X. Xia, S. Chaudhuri, Z. P. L. Laker, N. R. Wilson, G. N. Meloni, M. M. Melander, R. J. Maurer and P. R. Unwin, Nature Comm., 2021, 12, (7110).
[7] J. T. Mefford, A. R. Akbashev, M. Kang, C. L. Bentley, W. E. Gent, H. D. Deng, D. H. Alsem, Y.-S. Yu, N. J. Salmon, D. A. Shapiro, P. R. Unwin, W. C. Chueh, Nature, 2021, 593, 67 - 73.
[8] R. G. MarianoM. KangO. J. WahabI. J. McPhersonJ. A. RabinowitzP. R. Unwin and M. W. Kanan, Nature Materials, 2021, 20, 1000 - 1006.
[9] C. L. Bentley, M. Kang, P. R. Unwin, J. Am. Chem. Soc., 2019, 141, 2179–2193.
[10] M. Kang, D. Momotenko, A. Page, D. Perry, P. R. Unwin, Langmuir, 2016, 32, 7993-8008.