Aarhus University Seal

Specialized iNANO lecture by Prof. Dr. Hans-Achim Wagenknecht, Karlsruher Institut für Technologie, Germany

Nucleic acid chemistry with light

Info about event


Friday 27 January 2023,  at 09:15 - 10:00


iNANO AUD (1593-012)


Professor Kurt V. Gothelf (kvg@chem.au.dk)

Professor, Dr. Hans-Achim Wagenknecht, Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Germany

Nucleic acid chemistry with light

Light is an important trigger or energy source for functions in organic, bioorganic and in particular nucleic acid chemistry ranging from synthesis, fluorescence, damaging and photocatalysis.

The lecture will cover briefly three topics regarding the use of light in our laboratory and gives an overview in selected light-induced artificial functions in DNA:
(i) The usage of light for postsynthetic DNA and RNA modifications allows their temporal and spatial control. This includes bioorthogonal reactions for labelling of DNA and RNA by postsynthetic “photoclick” chemistry and new photostable dyes for fluorescent DNA modifications by Diels-Alder reactions with inverse electron demand.1-7
(ii) C-nucleosides of benzophenones and xanthones allowed us to study T-T dimer formation and triplet-triplet energy transfer as pathways to photoinduced DNA damages.8-9 DNA-based photocatalysis is possible with chirality transfer from the DNA to the photochemical reaction.10 Remote DNA photodamaging occurs up to 30 base pairs away from light excitation.11
(iii) DNA as template for supramolecular architectures allows the sequence-specific assembly of chromophores via the encoded hydrogen bonding pattern.12,13 The important features of DNA, chirality and helicity, persist even in the solid state for optoelectronic applications, such as solar cells.14,15 These DNA architectures show aggregation-induced emission and light-harvesting properties that can be used in solar cells.16,17



  1. Review: Ganz, D.; Harijan, D.; Wagenknecht, H.-A. RSC Chem. Biol. 2020, 1, 86-97.
  2. Review: Krell, K.; Harijan, D.; Ganz, D.; Doll, L.; Wagenknecht, H.-A. Bioconjugate Chem. 2020, 31, 990-1011.
  3. Arndt, S.; Wagenknecht, H.-A. Angew. Chem. Int. Ed. 2014, 53, 14580-14582.
  4. Lehmann, B.; Wagenknecht, H.-A. Org. Biomol. Chem. 2018, 16, 7579-7582.
  5. Krell, K.; Wagenknecht, H.-A. Biomolecules 2020, 10, 480.
  6. Schwechheimer, C.; Rönicke, F.; Schepers, U.; Wagenknecht, H.-A. Chem. Sci. 2018, 9, 6557-6563.
  7. P. Geng, E. List, F. Rönicke, H.-A. Wagenknecht, Chem. Eur. J. 2023, 28,   e20220315.
  8. Antusch, L.; Gaß, N.; Wagenknecht, H.-A. Angew. Chem. Int. Ed. 2017, 56, 1385-1389.
  9. Kuhlmann, A.; Bihr, L.; Wagenknecht, H.-A. Angew. Chem. Int. Ed. 2020, 59, 17378-17382.
  10. Gaß, N.; Gebhard, J.; Wagenknecht, H.-A. ChemPhotoChem 2017, 1, 48-50.
  11. Review: Wagenknecht, H.-A. ChemBioChem 2022, 23, e202100265.
  12. Hofsäß, R.; Ensslen, P.; Wagenknecht, H.-A. Chem. Commun. 2019, 55, 1330-1333.
  13. Hofsäß, R.; Sinn, S.; Biedermann, F.; Wagenknecht, H.-A. Chem. Eur. J. 2018, 24, 16257-16261.
  14. Ensslen, P.; Gärtner, S.; Glaser, K.; Colsmann, A.; Wagenknecht, H.-A. Angew. Chem. Int. Ed. 2016, 55, 1904-1908.
  15. Müller, S.; Manger, F.; Graf von Reventlow, L.; Colsmann, A.; Wagenknecht, H.-A. Front. Chem. 2021, 9, 645006.
  16. Ucar, H.; Wagenknecht, H.-A. Chem. Sci. 2021, 12, 10048-10053.
  17. Ucar, H.; Wagenknecht, H.-A. Chem. Commun. 2022, 58, 6437-6440.