Specialized iNANO lecture by Professor Annemieke Madder, Ghent University
Furan- and TAD-based Chemistries for Bio-orthogonal Nucleic acid and Protein Modification
Info about event
Time
Location
iNANO AUD (1593-012)
Organizer
Furan- and TAD-based Chemistries for Bio-orthogonal Nucleic acid and Protein Modification
Within OBCR, we have developed a highly selective and efficient furan-oxidation mediated crosslink technology which is applicable to peptide-protein, peptide-nucleic acid and nucleic acid interstrand crosslink scenarios.[1] Furan activation requires an oxidation trigger,[2] allowing spatiotemporal control of the crosslinking event.
We developed furan-modified oligonucleotide probes which can be used for efficient and selective crosslinking to natural nucleic acid targets[3] as well as protein targets.[4] In the context of peptide ligand-receptor interactions, we have described, in live cells under normal growth conditions, selective crosslinking of furan-modified peptide ligands to their membrane receptor with zero toxicity, high efficiency and spatio-specificity.[5]
Different furan and triazolinedione based chemistries were further developed for versatile and site-selective modification of proteins.[6] The talk will highlight selected specific examples of these cross-linking and conjugation methodologies.
The work was supported by the FWO-Vlaanderen, the BOF-UGent and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721613 (MMBio) and No. 665501 (Pegasus2).
References:
1 a) Carrette, L.L.G, Morii, T.; Madder, A. Bioconj. Chem. 2013, 24(12), 2008-2014; b) L. L. G. Carrette, E. Gyssels, N. De Laet and A. Madder. Chem Comm. 2016, 52, 1539.
2 a) Op de Beeck, M., and Madder, A. JACS 2012, 134, 10737–10740; b) De Laet, N., Llamas, E.M., and Madder, A. ChemPhotoChem 2018 2, 575–579;
3 a) Stevens, K. and Madder, A. Nucleic Acids Research 2009, 1555; b) De Beeck, M.O., and Madder, A. JACS 2011. 133, 796–807; c) Manicardi, A., Gyssels, E., Corradini, R., and Madder, A. Chem. Comm. 2016, 52, 6930–3; d) Manicardi, A. Cadoni, E. and Madder, A. Chem. Sci., 2020, 11, 11729–11739; e) E. Cadoni, A. Manicardi, M. Fossépré, K. Heirwegh, M. Surin and A. Madder, Chem. Commun., 2021, 57, 1010–1013.
4 a) Miret-Casals, L.; Vannecke, W.; Hoogewijs, Madder, A. et al. Chem. Comm., 2021, 57, 6054 – 6057; b) Miret Casals, L.; Van De Putte, S. ; Madder, A. et al. Frontiers in Chemistry, 2022. 9:799706.
5 a) Vannecke, Van Troys, Ampe & Madder, ACS Chemical Biology 2017, 2191; b) EP10196898.0.; c) EP 15176415.6.
6 a) Decoene, K. W.; Ünal, K.; Staes, A.; Zwaenepoel, O.; Gettemans, J.; Gevaert, K.; Winne, J. M.; Madder, A. Chemical Science, 2022, 13, 5390 – 5397. b) De Geyter, E.; Antonatou, E.; Kalaitzakis, D.; Madder, A. Chemical Science, 2021, 12, 5246 – 5252.