Technology Roadmap of Micro/Nanorobots
Assistant Prof. Miguel Ramos Docampo and Prof. Brigitte Stadler were two of the 103 authors who contributed to this Mega Review published in ACS Nano on the topic of Micro/Nanorobots, a field that celebrated its 20th anniversary last year.

This comprehensive review provides an in-depth survey of the past, present, and future direction of micro- and nanorobotics—tiny, programmable machines poised to revolutionize fields such as biomedicine, environmental cleanup, and advanced sensing. The roadmap identifies key technological and conceptual hurdles preventing these microscopic robots from reaching their full potential in real-world applications.
Drawing on contributions from leading experts worldwide the review highlights major achievements, current capabilities, and emerging directions in this interdisciplinary field.
One of the highlighted contributions comes from the Stadler Lab at Aarhus University’s Interdisciplinary Nanoscience Center (iNANO), which has developed a nature-inspired propulsion method based on (de)polymerization-driven locomotion. Using surface polymerization to fuel self-navigating micro- and nanomotors, the lab demonstrated enhanced diffusion and early signs of swarming behavior. This biocompatible, fuel-responsive approach offers a versatile platform for future applications in medicine and materials science.
In addition to exploring fundamental scientific advancements, the road map also addresses critical topics such as sustainability, ethics, and business opportunities.
About the study
Study type:
Perspective article
External funding:
The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. Martin Pumera acknowledges the financial support of Grant Agency of the Czech Republic (EXPRO: 25-15484X). Xiaohui Ju, Xia Peng and Cagatay M. Oral acknowledge ERDF/ESF project TECHSCALE (No. CZ.02.01.01/00/22_008/0004587) for financial support. Xiaohui Ju acknowledges the financial support from Czech Grant Agency GACR standard grant No. 25-15996S. Salvador Pane, Fabian Landers and Semih Sevim acknowledge funding from the European Union's Horizon 2020 Proactive Open program under FETPROACT-EIC-05-2019 ANGIE (No. 952152) and the European Union’s Horizon Europe Research and Innovation Programme under the EVA project (GA no. 101047081).Li Zhang acknowledges funding support from the Hong Kong Research Grants Council (RGC) with grant numbers R4015-2, RFS2122-4S03, and STG1/E-401/23-N. Hamed Shahsavan acknowledges Natural Sciences and Engineering Research Council of Canada (NSERC). Cagatay M. Oral and Hamed Shahsavan were in part funded by the WIN-CEITEC BUT Joint Seed Funding Program. Qiang He and Xiankun Lin acknowledge the National Natural Science Foundation of China (22193033, U22A20346) and Heilongjiang Provincial Key R&D Program (2022ZX02C23) for providing financial support. Il-Doo Kim acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00435493). Ramin Golestanian acknowledges support from the Max Planck School Matter to Life and the MaxSynBio Consortium which are jointly funded by the Federal Ministry of Education and Research (BMBF) of Germany and the Max Planck Society. Bradley J. Nelson and Semih Sevim acknowledge funding from the Swiss National Science Foundation under SNSF-Sinergia project no. 198643. Raphael Wittkowski is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) − 535275785. Daniel Ahmed acknowledges the support provided by the European Research Council, as part of the European Union’s Horizon 2020 research and innovation program (grant agreement 853309, SONOBOTS) and Swiss National Science Foundation (SNSF) under the SNSF Project funding MINT 2022 grant agreement No. 213058. Daniel Ahmed also extends thanks to Zhiyuan Zhang, Mahmoud Medany, and Prajwal Agrawal for helpful discussions. Wei Wang acknowledges the National Natural Science Foundation of China (T2322006) and the Shenzhen Science and Technology Program (RCYX20210609103122038). Mariana Medina-Sánchez acknowledges the financial support received from the European Union’s Horizon 2020 research and innovation program (ERC Starting Grant Nr. 853609), the HORIZON-MSCA-2022-COFUND-101126600-SmartBRAIN3, and the Grant PID2023-148899OA-I00 funded by MICIU/AEI/ 10.13039/501100011033. Maria Guix acknowledges the financial support from the Spanish Ministry of Science (grants RYC2020-945030119-I and PID2023-151682NA-I00 funded by MCIN/ AEI /10.13039/501100011033/ and FEDER) and Unidades de Excelencia María de Maeztu 2021 CEX2021-001202-M. Bahareh Behkam and Naimat Kalim Bari acknowledge support from the National Science Foundation (CBET-2318093). Naimat Kalim Bari also gratefully acknowledges financial support from the Virginia Tech Presidential Postdoctoral Fellowship. Raymond Kapral acknowledges the Natural Sciences and Engineering Research Council of Canada. Giuseppe Battaglia, Subhadip Ghosh and Bárbara Borges Fernandes thank the European Research Council ChessTaG grant 769798 (G.B.); Ministry of Science and Innovation of Spain, Proyectos I+D+I PID2020-119914RBI00 and Proyectos I+D+I PID2023-149206OB-I00 and the Agencia de Gestión de Ayudas Universitarias y de Investigación (AGAUR) for the grant SGR 01538 and for SG fellowship (2022 BP 00214). Alexander Leshansky and Konstantin Morozov acknowledge the support of the Israel Science Foundation (ISF) via grant no. 2899/21. Alberto Escarpa and Beatriz Jurado Sánchez acknowledge support from The Spanish Ministry of Science, Innovation and Universities [Grant PID2023-152298NB-I00 funded by MCIN/AEI/10.13039/501100011033 and FEDER, UE (A.E, B. J. S), grant TED2021-132720B-I00, funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR (A.E, B. J. S); grant CNS2023-144653 funded by MCIN/AEI/10.13039/ 501100011033 and the European Union “NextGenerationEU”/PRTR] and Junta de Comunidades de Castilla la Mancha (grant number SBPLY/23/180225/000058). Jeremie Palacci acknowledges support from the European Union through ERC grant (VULCAN, 101086998). Josep Puigmartí-Luis acknowledges the Agencia Estatal de Investigación (AEI) for the María de Maeztu, project no. CEX2021-001202-M, the Ministerio de Ciencia, Innovación y Universidades (Grant No. PID2020-116612RB-C33 funded by MCIN/AEI/10.13039/501100011033) and the Generalitat de Catalunya (2021 SGR 00270). James D. Nicholas, Jordi Ignés-Mullol, and Josep Puigmartí-Luis acknowledge support from the European Union’s Horizon Europe Research and Innovation Programme under the EVA project (GA no: 101047081). Josep Puigmartí-Luis and Jordi Ignés-Mullol acknowledge support from the European Union’s Horizon 2020 Proactive Open program under FETPROACT-EIC-05-2019 ANGIE (No. 952152). Jordi Ignés-Mullol also acknowledges the Ministerio de Ciencia, Innovación y Universidades (Grant No. PID2022-137713NB-C21 funded by MICIU/AEI/10.13039/501100011033). Lauren Zarzar and Yutong Liu acknowledge support from the US Army Research Office (Grant W911NF-18-1-0414). Longqiu Li acknowledges the National Natural Science Foundation of China (52125505, U23A20637) for providing financial support. Wyatt Shields acknowledges support from the National Science Foundation (NSF) through a CAREER grant (CBET 2143419). Xing Ma acknowledges the support from Shenzhen Science and Technology Program (RCJC20231211090000001). David H. Gracias acknowledges support from the NIH-NIBIB (R01EB017742). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Samuel Sánchez acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 and Horizon Europe research and innovation programmes (grants agreement No 866348, i-NanoSwarms), the CERCA program by the Generalitat de Catalunya, the project 2021 SGR 01606, and the "Centro de Excelencia Severo Ochoa" (Grant CEX2023-001282-S). Maria Jose Esplandiu acknowledges the Ministerio de Ciencia e Innovación of Spain (MICIN) through PID 2021-124568NB-I00 and TED2021-129898B-C21 project. Sarthak Misra and Antonio Lobosco acknowledge funding from European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Nr. 866494, project-MAESTRO). Jinxing Li acknowledges support from the National Science Foundation under Award Nos. CMMI 2323917, ECCS-2216131, ECCS 2339495, ECCS-2334134, NIH NIBIB Trailblazer R21 Award, and Henry Ford Hospital + MSU Cancer Research Pilot Award. Ze Xiong acknowledges the financial support from the International S&T Cooperation Program of Shanghai (24490710900) and the start-up grant from ShanghaiTech University (2023F0209-000-02). Yongfeng Mei acknowledges the National Natural Science Foundation of China (62375054), Science and Technology Commission of Shanghai Municipality (24520750200, 24CL2900200), and Shanghai Talent Programs. Ayusman Sen thanks the National Science Foundation, the Air Force Office of Scientific Research, and the Sloan Foundation for their financial support. Abdon Pena-Francesch acknowledges support from the Air Force Office of Scientific Research under award number FA9550-24-1-0185. Katherine Villa acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (GA no. 101076680; PhotoSwim) and the support from the Spanish Ministry of Science (MCIN/AEI/10.13039/501100011033) and the European Union (Next generation EU/PRTR) through the Ramón y Cajal grant, RYC2021-031075-I. Kang Liang acknowledges support from the Australian Research Council (DP250101401 and FT220100479) and the National Breast Cancer Foundation, Australia (IIRS-22–104). Jizhai Cui acknowledges the National Key Technologies R&D Program of China (2022YFA1207000) and Shanghai Rising-Star Program (24QA2700700). Xiang-Zhong Chen acknowledges the National Natural Science Foundation of China (52473254) and the National Key Research and Development Program of China (2023YFB35070003).
Conflicts of interest:
The authors declare the following competing financial interest(s): Giuseppe Battaglia is the founder and company director of ViaNautis Bio, a company focusing on the development of novel genetic medicines.
Link to the scientific article:
https://doi.org/10.1021/acsnano.5c03911
Xiaohui Ju, Chuanrui Chen, Cagatay M. Oral, Semih Sevim, Ramin Golestanian, Mengmeng Sun, Negin Bouzari, Xiankun Lin, Mario Urso, Jong Seok Nam, Yujang Cho, Xia Peng, Fabian C. Landers, Shihao Yang, Azin Adibi, Nahid Taz, Raphael Wittkowski, Daniel Ahmed, Wei Wang, Veronika Magdanz, Mariana Medina-Sánchez, Maria GuixNaimat Bari, Bahareh Behkam, Raymond Kapral, Yaxin Huang, Jinyao Tang, Ben Wang, Konstantin Morozov, Alexander Leshansky, Sarmad Ahmad Abbasi, Hongsoo Choi, Subhadip Ghosh, Bárbara Borges Fernandes, Giuseppe Battaglia, Peer Fischer, Ambarish Ghosh, Beatriz Jurado Sánchez, Alberto Escarpa, Quentin Martinet, Jérémie Palacci, Eric Lauga, Jeffrey Moran, Miguel A. Ramos-Docampo, Brigitte Städler, Ramón Santiago Herrera Restrepo, Gilad Yossifon, James D. Nicholas, Jordi Ignés-Mullol, Josep Puigmartí-Luis, Yutong Liu, Lauren D. Zarzar, C. Wyatt Shields IV, Longqiu Li, Shanshan Li, Xing Ma, David H. Gracias, Orlin Velev, Samuel Sánchez Maria Jose Esplandiu,
Contact information:
Professor Brigitte Maria Städler
Aarhus University
Interdisciplinary Nanoscience Center (iNANO)
Email: bstadler@inano.au.dk
Assistant Professor Miguel Alexandre Ramos Docampo
Aarhus University
Interdisciplinary Nanoscience Center (iNANO)
Email: miramos@inano.au.dk