Aarhus University Seal / Aarhus Universitets segl

Protein Biophysics (Prof. Daniel Otzen)

Daniel Otzen

Professor Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset
Group members
Research funding

Research focus in brief

Our research activities fall within 3 main areas, which all relate to the study of the kinetics and thermodynamics of protein conformational changes, namely membrane protein folding, protein-detergent interactions and protein fibrillation. These areas are linked by a keen interest in understanding the mechanistic and thermodynamic behaviour of proteins in different circumstances by quantifying the strength of internal side-chain interactions as well as contacts with solvent molecules, whether it be detergents, denaturants, stabilizing salts and osmolytes or lipids. Ultimately we hope this will lead to a greater manipulative ability vis-a-vis processes of both basic, pharmaceutical and industrial relevance. The general approach is to use available spectroscopic techniques (fluorescence, CD, stopped-flow, FTIR, NMR and dynamic and static light scattering) to generate data which can be analyzed in a quantitative manner to develop models and mechanisms for conformational changes at the molecular level.  

News

In the future, the newly discovered mechanism will potentially enable insertion of the sensor specifically into diseased cells and may allow diagnosis at the single cell level. Figure: Rasmus Peter Thomsen/AU.
The researchers from Aarhus University behind the scientific article (from left): Rasmus P. Thomsen, Jørgen Kjems and Rasmus Schøler Sørensen. Photo: Anne Færch Nielsen/AU.

2019.12.13 | iNano

Researchers create synthetic nanopores made from DNA

A scientific collaboration led by researchers at iNANO/Department of Molecular Biology and Genetics at Aarhus University and the Department of Chemistry at the University of Copenhagen has resulted in the construction of a synthetic DNA nanopore capable of selectively translocating protein-size macromolecules across lipid bilayers.

Poul Nissen receives DKK 40 million (USD 6 million) from the Lundbeck Foundation's professor programme to conduct ground-breaking brain research. Photo: Lisbeth Heilesen

2019.12.10 | iNano

Poul Nissen receives the Lundbeck Foundation's professor grant

The Lundbeck Foundation is awarding grants worth DKK 232 million (USD 34 million) to six leading neuroscientists. The LF Professorships programme is the Foundation’s largest grant allocation to date.

"Humanity is facing a huge problem in relation to both climate change and limited carbon-based resources. We need to find other sources of carbon," says Associate Professor Nina Lock, who's received a generous grant from the Carlsberg Foundation for her new project. Photo: AU Foto.

2019.12.10 | iNano

Metal-organic sponge to convert CO2 into fuel

Associate Professor Nina Lock from the Department of Engineering and iNANO associated has received a grant of DKK 4.3 million (EUR 0.6 mill.) from the Carlsberg Foundation to develop an entirely new material which, through electrocatalysis, can transform CO2 into useful products.

Showing results 13 to 15 of 249

Previous 1 2 3 4 5 6 7 8 9 10 Next

Recent publications

Sort by: Date | Author | Title